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Abstract
We study the possibility of nanoscale phase separation in manganites in
the framework of the double-exchange model. The homogeneous canted
state of this model is proved to be unstable towards the formation of small
ferromagnetic droplets inside an antiferromagnetic insulating matrix. For
the ferromagnetic polaronic state we analyse the quantum effects related to the
tails of electronic wave function and a possibility of electron hopping in the
antiferromagnetic background. We find that these effects lead to the formation
of the threshold for the polaronic state.

PACS numbers: 75.30.Et, 75.50.Tt

1. Introduction

Manganites, the Mn-based magnetic oxide materials such as LaMnO3, have been known for
more than 50 years. Jonker and van Santen [1], and, in more detail, Wollan and Koehler
[2] investigated the rich magnetic structure of Ca-doped La1−xCaxMnO3 and conductivity in
these materials. Specifically, a strong correlation between magnetic and transport properties in
manganites was observed. These materials exhibit a metal-like resistance in a ferromagnetic
phase and an insulating behaviour in an antiferromagnetic phase.

While the variety of magnetic structures in manganites was explained by Goodenough [3]
based on the theory of semicovalent exchange, the correlation between transport and magnetic
properties was first qualitatively explained by Zener [4]. He suggested that the conduction
electrons travel in La1−xCaxMnO3 through the Mn4+ ions and each ion carries a fixed magnetic
moment which is strongly ferromagnetically coupled with the spin of a carrier by a generalized
Hund rule. Since the spin of a conduction electron should be aligned parallel to the local spin,
in the classical picture a conduction electron cannot move in an antiferromagnetically ordered
environment. Anderson and Hasegawa [5] solved the problem of two local spins and one
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conduction electron, providing a strong mathematical background to Zener’s ideas. They
found that if the bare hopping amplitude was t, then the hopping amplitude of an electron
moving between the two local spins is teff = t cos θ , where θ is the angle between the
directions of the local spins. Thus, the kinetic energy of conduction electrons directly depends
on the angle between the sublattice moments. Moreover, the conduction electrons tend to
align ferromagnetically the local spins, which surround them. Hence, a competition between
ferromagnetic coupling via a conduction electron (the so-called double exchange mechanism)
and an antiferromagnetic coupling via superexchange of two neighbouring local spins takes
place. De Gennes [6] suggested that this competition results in a homogeneous canted state,
namely the angle θ is uniform and monotonically changes from π (collinear antiferromagnetic
order) to 0 (collinear ferromagnetic order) with increasing carrier concentration x. Based on
these considerations de Gennes plotted the first phase diagram of the manganites.

Soon after this work, Nagaev [7, 8] improved de Gennes results by considering quantum
fluctuations associated with the local spins. Nagaev proved that electron can move even in
an antiferromagnetically ordered phase with a small hopping amplitude t/

√
2S + 1. Nagaev,

Kasuya and Mott also proposed [8–11] that for small electron concentrations it is more
favourable for conduction electrons to form a self-trapped state (ferromagnetic polaron or
ferron) in the antiferromagnetic matrix by creating a small ferromagnetic bubble, rather than
to form a homogeneous canted state in the whole sample. Thus, it was one of the first hints
for nanoscale phase separation in a double-exchange model made by that time.

Recent growth of interest in manganites was initiated in 1993 by the discovery of the
colossal magnetoresistance (CMR) effect in doped LaMnO3. The CMR phenomenon implies
a drastic decrease of resistivity in manganites in the presence of a magnetic field [12, 13].
Soon after the discovery of CMR in manganites the phase diagram of La1−xCaxMnO3 was
revised [14]. It was found that a variety of phases appear in manganites in addition to those
predicted by de Gennes.

There are plenty of experimental and theoretical studies of manganites nowadays.
They were initiated first of all by the potential technological applications of colossal
magnetoresistance phenomena and also by the interesting physics of strong correlations,
which manifests itself in these materials. In particular, the interaction of spin, charge and
orbital degrees of freedom in manganites as well as their rich phase diagrams has drawn much
attention of theorists and experimentalists in recent years.

The important question that has to be answered is about a leading mechanism responsible
for CMR in the optimum doping region (x � 0.3). Some authors argue that CMR could be
explained in the framework of the double-exchange mechanism alone [15], others [16] claim
that it is necessary to take into account a lattice interaction (Jahn–Teller polarons), some insist
that percolation-type arguments could explain CMR [17]. However, as was pointed out by
Dagotto et al [18] and Arovas and Guinea [19], both analytical and numerical calculations in
various models related to manganites exhibit a strong tendency towards phase separation in
a wide range of temperatures and concentrations. Thus, it is believed that CMR phenomena
could be understood as a competition and coexistence of different phases in manganites as
well as a phenomenon related to the proximity of the optimum doping region to various phase-
separation thresholds. Note that at higher concentrations close to half-filling there appears
another threshold of phase separation in the system corresponding again to the formation of
ferromagnetic droplets, but now in a charged ordered insulating matrix [20].

One of the authors [21] demonstrated that the double-exchange model at low doping is
unstable towards phase separation and the energy of a homogeneous canted state is higher
than the energy of a self-trapped state corresponding to a ferromagnetic polaron. Hence a
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legitimate question arises whether the stability of a polaronic state is preserved when quantum
fluctuations of spins and tails of wave function of conduction electrons are taken into account.

2. Basic theoretical model

The general chemical formula of the most popular class of manganites is Ln1−xAxMnO3,
where Ln is a trivalent cation Ln3+ (La, Pr, Nb, Sm, . . . ), and A2+ is a divalent cation
(Ca, Sr, Ba, Mg, . . . ). Oxygen is in an O2− state, and the relative fraction of Mn4+ and Mn3+

is controlled by a chemical doping x. This class of manganites has the perovskite structure.
In the cubic lattice environment, the five-fold degenerate 3d-orbitals of Mn-ions are split into
three lower energy levels (dxy, dyz and dzx), usually referred to as t2g , and two higher energy
eg states (dx2−y2 and d3z2−r2 ). The t2g levels with three electrons form a state with a local spin
S = 3/2, whereas delocalized eg states contain an electron or are unoccupied depending on
the chemical doping x. The eg states are further split by the static Jahn–Teller effect and for
simplicity we will treat here only the lowest eg state, assuming a Jahn–Teller gap to be large
enough and neglecting any orbital effects in our consideration.

The simplest theoretical model suggested for the explanation of the properties of
manganites is the ferromagnetic Kondo lattice model (s–d model):

Ĥ = −JH

∑
i

Siσi − t
∑
〈i,j〉

Pc+
iσ cjσ P + Jff

∑
〈i,j〉

SiSj . (1)

The first term in equation (1) represents a strong on-site Hund’s ferromagnetic coupling
(JH > 0) between the local spin S = 3/2 and the spin of a conduction electron. In
real manganites, the Hund’s interaction JH is of the order of 1 eV. The second term in
equation (1) is the kinetic energy of the conduction electrons. The projection operator P
corresponds to the case of singly occupied eg orbitals (a strong Hund’s interaction prevents
two conduction electrons with different spin projections from occupying the same site). Note
that a strong electron–lattice interaction significantly reduces the effective width W of the
conduction band (W = 2zt) resulting in a rather small hopping amplitude t ≈ 0.3 eV.
The third term in equation (1) is a weak antiferromagnetic coupling between local spins on
neighbouring sites, with Jff ∼ 0.001 eV. In equation (1), symbols 〈i, j 〉 mean the summation
over z nearest neighbour sites.

In the case of a strong on-site Hund’s coupling (JH � W � Jff ) the model described
by the first two terms of the Hamiltonian (1) is referred to as the double-exchange model.
Note that if all local spins are ferromagnetically aligned, the conduction electrons will
move freely in their surrounding. Thus, model (1) describes the competition between the
direct antiferromagnetic coupling of local spins and the double exchange via conduction
electrons, which tends to order local spins ferromagnetically. In the strong-coupling limit,
Hamiltonian (1) can be simplified:

Ĥ = −
∑
〈i,j〉

t (θij )a
+
i aj + Jff S2

∑
〈i,j〉

cos(θij ) (2)

where a+
i and aj are creation and annihilation operators of spinless fermions (conduction

electrons whose spins σ are aligned parallel to the local spins), t (θij ) is an effective hopping
amplitude and θij is an angle between sublattice moments, as we already discussed. The
hopping amplitude in the case of classical spins (S � 1) reads

t (θ) = t cos(θ/2). (3)

In Nagaev’s quantum approach the local spins at empty sites have the maximum projection,
+S, on the magnetization vector of the corresponding sublattice. At occupied sites, however,
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local spin S and spin σ of a conduction electron form a state with the total spin S + 1/2, but
with two possible projections of it S ± 1/2. So there are two effective bands in quantum
canting corresponding to the two different projections of the total spin. Their bandwidths read
[8, 21]:

t±(θ) = t

2S + 1

[√
2S + 1 + S2 cos2(θ/2) ± S cos(θ/2)

]
. (4)

The quantum hopping amplitude drastically differs from the classical de Gennes one. In
contrast to the de Gennes picture, an electron can still move through antiferromagnetic matrix
creating a state with Sz

tot = S +1/2 at one site and a state with Sz
tot = S −1/2 at a neighbouring

site (a string-like motion introduced by Zaanen and Oleś [22]):∣∣Sz
tot = S + 1

2

〉 → ∣∣Sz
tot = S − 1

2

〉 → ∣∣Sz
tot = S + 1

2

〉 · · · .
Hence, there are two equal hopping amplitudes in the case of electron motion through
antiferromagnetic background: t+ = t− = t/

√
2S + 1. On the other hand, for ferromagnetic

ordering one gets from equation (4) t+ = t and t− = t/(2S + 1). The proportionality of
an effective bandwidth in the case of quantum canting to 1/

√
S is just an implication of its

quantum nature.

3. Homogeneous canted state

An energy of the classical de Gennes state taking into account the antiferromagnetic interaction
between the local spins reads

E = −ztx cos(θ/2) + 1
2zJff S2 cos(θ) (5)

where z is the number of nearest neighbours, and x is the carrier concentration. The first term
in this equation is the gain in the kinetic energy, and the second term is the loss in the energy
of antiferromagnetic interaction between local spins. Minimization of the energy (5) with
respect to the parameter cos(θ/2) yields

E = − zt2x2

4Jff S2
− zJff S2, cos(θ/2) = tx

2Jff S2
. (6)

Thus, we have a transition from a collinear antiferromagnetic state for x = 0 to a collinear
ferromagnetic state for x = xc4 = 2Jff S2/t . For 0 < x < xc4, the canting angle (θ 	= π),
and a homogeneous canted state takes place.

Previously, various homogeneous states were considered taking into account the quantum
hopping amplitudes [8, 21]. In contrast to the classical case, a collinear antiferromagnetic
state remains energetically favourable up to the critical value of the carrier concentration xc1,
which is given by

xc1 = π4

3

[
8Jff S2

zt

1√
2S + 1

]3

. (7)

Thus, in a quantum case, the canted state occurs for x > xc1, whereas in the classical case the
canted state appears for arbitrarily low doping levels. At higher doping levels (x > xc1), the
two-band quantum canted state arises, namely conduction electrons are in the two bands with
total spin projections

∣∣Sz
tot = S + 1/2

〉
and

∣∣Sz
tot = S − 1/2

〉
. However, at x > xc2 ≈ (27/2)xc1

the bottom of the second band lies above the chemical potential level and a one-band state
of quantum canting becomes favourable [21]. Finally, at much higher carrier concentration
(x > xc3 = 4Jff S2/t

√
2S + 1), a transition to the classical canted state of de Gennes (5)

occurs. Note that for x > xc4 = 2Jff S2/t the canted state transforms into a collinear
ferromagnetic state with the angle θ = 0.
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To test the stability of the homogeneous state the electronic compressibility was calculated
[21] according to the standard formula κ−1 = d2E/dx2. At very low concentrations
x < xc1 the compressibility is positive and a homogeneous collinear antiferromagnetic state
corresponds to at least a local minimum of energy. However, in the range of concentrations
xc1 < x < xc4 the compressibility κ < 0 and the canted state is unstable. For example, we
can calculate the compressibility of the classical de Gennes canted state and get

κ−1 = − zt2

2Jff S2
< 0.

Hence compressibility of this state is negative, i.e. the de Gennes classical canted state is also
unstable. The negative sign of the compressibility indicates the instability of the homogeneous
state towards phase separation. The simplest case of nanoscale phase separation corresponds
to the formation of small ferromagnetic polarons inside an antiferromagnetic matrix. This
state was considered in [21, 23] and it was shown that a polaronic state is more favourable
energetically than all the homogeneous states in the total range of concentration 0 < x < xc4.
Note that magnetic polarons, in this case, correspond to the electron in the self-trapped
ferromagnetic state of finite radius inside the antiferromagnetic insulating matrix.

4. Polaronic state

As we already discussed, in the case of the classical hopping amplitude (3) a conduction
electron may be self-trapped and form ferromagnetic droplets (magnetic polarons) inside the
antiferromagnetic matrix. The simplest assumption is to consider that the boundary between
the ferromagnetic region and the antiferromagnetic matrix is abrupt without an extended region
of inhomogeneous canting. Then the energy of a polaronic state reads

E = −tx

(
z − π2a2

R2

)
+

1

2
zJff S2 4π

3
x

(
R

a

)3

− 1

2
zJff S2

[
1 − 4π

3
x

(
R

a

)3
]

. (8)

In equation (8), R is the radius of a polaron and a is the lattice constant. The first term in
equation (8) describes the kinetic energy gain due to the formation of a ferromagnetic region.
The corrections to this term proportional to ta2/R2 correspond to the localization energy of a
conduction electron inside a ferromagnetic droplet of radius R. The second term in equation (8)
is a loss in the Heisenberg antiferromagnetic energy of local spins inside the droplet. Finally,
the third term describes the energy of an antiferromagnetic interaction between local spins in a
region outside the ferromagnetic polarons. The polaron radius is obtained from the condition
of energy minimization dE/dR = 0. So we have the following expressions for energy and
polaron radius:

Epol = −ztx +
5

3
π2tx

(
2zJff S2

πt

)2/5

− 1

2
zJff S2 (9)

Rpol = a

(
πt

2zJff S2

)1/5

. (10)

Note that in this case the transition from a polaronic to a ferromagnetic state occurs when
ferromagnetic polarons start to overlap. The critical concentration for ferromagnetic transition
reads

xc5 = 3

4π

( a

R

)3
= 3

4π

(
2zJff S2

πt

)3/5

. (11)
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Figure 1. The electron wave function ψ(r) and the canting angle θ(r) in the quantum case (solid
lines) and the classical case (dashed lines).

Now, let us consider the quantum corrections for these results. In the case corresponding
to the quantum hopping amplitude (4), a conduction electron can move through the
antiferromagnetic background with a heavy mass m∗ ∼ √

S, so it is interesting to study
for this case a problem concerning the stability of a magnetic polaron. Since the analysis of
the discrete model (2) is rather complicated, we consider the continuum limit assuming that
the radius of a polaron is much larger than the lattice constant a (further on, we put a = 1). A
total energy (2) can now be written in the following form [24]:

E = −
∫

[z|ψ |2 + ψ∗�ψ]t (θ/2) dV + zJff S2
∫

cos2(θ/2) dV (12)

t (θ) = t

2S + 1

[√
2S + 1 + S2 cos2(θ/2) + S cos(θ/2)

]
. (13)

As one can see from equation (12), the total energy will lie between the two limiting values
corresponding respectively to the motion of the conduction electron via ferromagnetic or
antiferromagnetic background:

EFM = −zt < E < EAFM = − zt√
2S + 1

.

Since the electron wave function should be normalized
∫ |ψ |2 dV = 1, we minimize the

functional F = E − tβ
∫ |ψ |2 dV with respect to parameters θ and ψ , where β is a Lagrange

multiplier. The corresponding Euler–Lagrange equations have the following form:

[2zψ + �ψ] t (θ) + � [t (θ)ψ] − 2βtψ = 0 (14)[
(z|ψ |2 + ψ∗�ψ)

∂t (θ)

∂ cos(θ/2)
− 2zJff S2 cos(θ/2)

]
sin(θ/2) = 0. (15)

We solve these two coupled differential equations by the following iterative procedure [24]:
(a) we choose a trial function for the canting angle θ(r); (b) we solve the first differential
equation (14) to obtain an electron wave function ψ(r); (c) using the obtained value for ψ(r)
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Figure 2. The ground state energy corresponding to polaron formation in the quantum case
(open circles) and the classical case (solid circles). For local spin S = 3/2 ferromagnetic and
antiferromagnetic states correspond, respectively, to EFM = −6t and EAFM = −3t .

we solve equation (15) to get a canting angle function θ(r); (d) we return to step (a) until our
iteration process converges.

Functions ψ(r) and θ(r) obtained by the numerical solution of equations (14) and (15)
are shown in figure 1 for a broad range of the values of parameter α = t/Jff S2. Note that the
exact numerical solution which takes into account both the effects of quantum canting and the
tails of the wave function coincides with the classical Nagaev–Mott solution for α → ∞. One
can see that the magnetic polaron represents a very good localized object, and the transition
region from the ferromagnetic ordering (θ = 0) to an antiferromagnetic matrix (θ = π) is
narrow enough. Nevertheless, a polaronic state can disappear at a relatively small value of
the parameter αc ∼ 75. Indeed, as one can see from figure 2, there is a transition from the
polaronic state to a collinear antiferromagnetic state at small values of parameter α < αc. For
this case, the total energy of a magnetic polaronic state is equal to the bottom of the band
for electron motion through the antiferromagnetic background, and as a result for α < αc an
electron can move freely through the antiferromagnetic matrix. Note that to get a more precise
value of αc we should solve a variational problem for the functional F on the discrete lattice
since for small values of α a continuous approximation is not accurate enough. Work along
these lines is in progress now.

5. Conclusion

The tendency towards phase separation is very strong in the double-exchange model. We
have shown that in the wide range of parameter α = t/Jff S2 a conduction electron forms a
self-trapped state. In this state, an electron is localized in the ferromagnetic droplet of finite
radius embedded in the antiferromagnetic matrix. This construction seems rather natural in
the de Gennes classical approximation of the double exchange, where hopping amplitude
teff = t cos(θ/2) and electron cannot move through an antiferromagnetic background since
teff = 0 for θ = π . However, we have proved that even in the quantum case, when a conduction
electron can travel slowly through the antiferromagnetic matrix (since teff = t/

√
2S + 1 for

θ = π ), the polaronic state remains well defined and stable. Our approach to the one-electron
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problem in an antiferromagnetic matrix corresponds to a very small doping region in real
materials, where the concentration of charge carriers (e.g. holes in LaxCa1−xMnO3) is low.
However, we believe that even for higher concentrations the polaronic picture remains
qualitatively correct. Moreover, at very low concentrations magnetic polarons should be
localized on impurity sites [25] whereas at concentrations higher than the Mott threshold
they are depinned from the impurities. Preliminary estimates show that the Mott threshold
in manganites corresponds to xM ∼ 0.01–0.04, which is significantly lower than the critical
concentration xc5 ≈ 0.15 for the overlap of magnetic polarons.

Our model of polarons embedded in the ferromagnetic matrix allows one also to calculate a
magnetoresistance and a noise spectrum of manganites, if we suggest that an electron transport
takes place via the hopping of electrons from one polaron to another, while a polaron itself is
immobile. These calculations were carried out in [26, 27] and found experimental support in
the recent paper of Babushkina et al [28].

If we proceed now to the experimental confirmation of the small-scale phase-separated
picture we should mention that there already exists a lot evidence in favour of nanoscale phase
separation in low and moderately doped manganites. The confirmation of an inhomogeneous
state in manganites comes from the nuclear magnetic resonance experiments of Allodi
et al [29, 30], where the two different hyperfine lines corresponding to ferromagnetic and
antiferromagnetic regions were observed. The experiments on neutron scattering of Biotteau
et al [31] support the idea of small ferromagnetic droplets embedded in an antiferromagnetic
or a canted matrix. And if we turn to transport properties, a very natural picture of electron
percolation, which is in agreement with our model, was experimentally confirmed by the
Babushkina group in [32].

Thus the experimental and theoretical picture strongly confirms a phase-separated state
in manganites in the region of low doping. Moreover, we believe that this picture remains
qualitatively correct for the concentrations optimal for the CMR effect in the high temperature
region T > TC (TC is a Curie temperature), where the ferromagnetic fluctuations of the short
range (the temperature polarons) are present [23, 33]. Hence, a combination of very intuitive
picture of polarons and the ideas of the percolation theory could provide a correct description
of the behaviour of manganites in a wide range of temperatures and carrier concentrations.
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